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Abstract

Visual attention is the ability to select visual stimuli that are most behaviorally
relevant among the many others. It allows us to allocate our limited processing
resources to the most informative part of the visual scene. In this paper, we learn
general high-level concepts with the aid of selective attention in a principled un-
supervised framework, where a three layer deep network is built and greedy layer-
wise training is applied to learn mid- and high- level features from salient regions
of images. The network is demonstrated to be able to successfully learn mean-
ingful high-level concepts such as faces and texts in the third-layer and mid-level
features like junctions, textures, and parallelism in the second-layer. Unlike pre-
trained object detectors that are recently included in saliency models to predict
semantic objects, the higher-level features we learned are general base features
that are not restricted to one or few object categories. A saliency model built
upon the learned features demonstrates its competitive predictive power in natural
scenes compared with existing methods.

1 Introduction

Visual attention is a fundamental process of our visual system. It happens in our everyday life and
allows us to bring our fovea, the high-resolution part of retina, to sample the important parts of a
scene. Over the past decades, a large amount of efforts have been devoted to the research of visual
attention, yet its neural mechanism remains unclear.

Early computational models of visual attention mostly follow the “Feature Integration Theory” [1, 2]
and try to explain the mechanism of the attention based on low-level features such as intensity,
color, orientation [3, 4]. These models work well to a certain extent, but are usually insufficient in
predicting accurate eye fixations, especially when the scene contains strong semantic objects such
as faces, texts, or other socially meaningful contents [5, 6].

To approach this so-called “semantic gap”, improved models [6, 7, 8] have been proposed to better
predict human fixations by integrating higher-level features (e.g., a common practice is to add spe-
cific object detectors) into the original low-level feature based models. However, regarding the fact
that there are thousands of object categories existing in our daily life, simply adding detectors would
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make the saliency models more complex and even infeasible in implementation. Hence, a unified
framework that naturally integrates features at various levels is desirable.

Recent advances on deep learning and unsupervised feature learning [9, 10, 11] provide useful tools
for unified feature integration. Deep learning models are usually multilayer generative networks
trained to maximize the likelihood of input data with sparse priors on the responses of each layer.
When exposed to natural images, hierarchies of target-relevant features with increasing complexity
could be learnt in an unsupervised way and multiple levels of sparse representations can then be gen-
erated as the efficient coding of input signals. Such properties of deep learning models are attractive
in that they to some extent resemble early processing stage of the primate visual system [12, 13].

In this paper, we propose a model upon the deep learning framework to learn from natural images
higher-level features that normally attract attention. The main inspirations of our work are from the
observation that humans tend to frequently look at semantic objects like faces, texts, animals, and
cars, which are showed to be more important than other parts of the visual input. Further, recent
advances in deep network on the unsupervised learning of high-level features like faces [11] pointed
a promising direction of learning more general high-level feature that may be inherent in visual
perception, in an unsupervised manner.

The model is built by stacking three layers of sparse coding units and pooling units together. To
mimic the fixed size of image projected to the fovea during eye fixations, we train the network
purely on salient regions extracted from the MIT [6] and FIFA [14] dataset. Results show that this
uneven sampling based on eye fixations is the key to learn out meaningful high-level concepts. In
the inference stage, full images are taken as the input of the network and a hierarchy of sparse codes
are obtained according to the features learned in the training stage. Visualization and experimen-
tal results show that this model is able to encode high-level concepts like faces and texts and is
competitive among existing saliency models to predict where humans look at.

The main contributions of our work are:

1. We learn meaningful high-level visual features using the principled framework of deep
networks by modeling the way humans sample the visual scene.

2. We show that visual saliency plays an important role in the learning process. On one hand, it
allows the learning of more general higher-level features, not restricting to a particular/pre-
defined set of object categories; on the other, it selects the most informative part of the
visual input thus greatly enhances the signal-to-noise ratio of the learning input.

3. We propose a unified feature integration framework for saliency detection that could inte-
grate low-, mid- and high-level features in a biologically-plausible way.

The rest of the paper is organized as follows. In Section 2, we first review some related works on
saliency detection and deep network. Then, we present the model of multi-layer sparse network and
the way of training and testing the model in Section 3. In Section 4, experiments are conducted on
FIFA and MIT dataset and quantitative results are given. Section 5 concludes the article.

2 Related Works

In recent years, there have been growing interests in modeling eye fixations by integrating mid-
/high- level features [14, 8, 6, 15]. Cerf et. al. [14] refine the Itti and Koch’s model [3] by adding
a face detector. Zhao and Koch [8] further improve the Itti and Koch’s model [3] by using a least
square technique to learn the weights of face and low-level feature maps from different eye tracking
datasets. In Judd et. al.’s work [6], low-level features including statistics of local orientations,
luminance and colors, mid-level feature such as a horizon line detector, and high-level features such
as face detector and a person detector are integrated by a linear SVM to predict where humans look.
Based on Judd et. al.’s work, Lu et. al. [15] further improve the saliency computation by including
Gestalt cues such as convexity, symmetry and surroundedness into their model. All these works
indicate that mid-/high- level features play an important role in predicting human fixations, but there
still lacks a unified framework that could integrate various low-, mid- and high- level features that
have been mentioned or not mentioned above.
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Also closely related are deep learning models that aim to learn mid-/high-level features from natural
images. In one seminal work [9], Lee et. al. show that, by training on well-aligned images from the
Caltech 101 dataset [16], hierarchies of representations which correspond to object parts and objects
could be learned with a convolutional Restricted Boltzmann Machine (RBM). In [10], Zeiler et. al.
propose a hierarchical sparse network in which each layer reconstructs the input and show that edges,
junctions, and even object parts can be learned out from the images that contain objects. In one recent
work[11], Le et. al. build a three-layer deep auto-encoder and prove that neurons representing faces,
human bodies, and cats can be learned out in a fully unsupervised way on images sampled from 10
million YouTube videos. These models all validate that, by training on natural images, meaningful
high-level features can be learned out using a deep network. However, none of them has considered
the influence of visual attention on the feature learning in deeper levels. Furthermore, compared
with existing works, our model is able to learn out meaningful high-level neurons in relatively few
samples.

3 The Model

In this section, we describe a multilayer network that is used to learn features from salient regions.
Normally the model is composed of three layers of sparse coding units and pooling units stacking
together with a linear classifier at the end to read out the response of the network. This hierarchical
model shares similarity with several hierarchical models that aim to model the structure of the ventral
stream [17, 18, 19].

3.1 Sparse Coding Algorithm

Sparse coding is an unsupervised scheme that learns to represent input data using a small set of bases
(or features). It is the core computational algorithm in our model.

The idea of sparse coding originates from Barlow’s principle of redundancy reduction [20], which
states that a useful goal of sensory coding is to transform the input in such a manner that reduces
the redundancy of the input stream. In its original form of modeling image patches [21], it can be
described as a generative image model as:

E = ‖x− Φa‖22 + λ‖a‖1 (1)

where x is the input data, Φ denotes the bases or features learnt from the data, a is the sparse codes
for the data, and λ is the penalty constant for sparsity. Here ‖a‖p = (

∑
m |am|p)

1
p is called Lp

norm.

In (1), if we see x as an image, the first item ‖x − Φa‖22 can be seen as the difference between the
original image and the reconstructed image and the second item λ‖a‖1 can be seen as the sparse
penalty which regularizes the sparseness of the output codes. The features Φ and the sparse codes a
can be found by iteratively minimizing the energy function:

Φ = argmin
Φ
〈min

a
E〉 (2)

In our model, we update sparse codes a with coordinate descent [22] by fixing basis Φ and updating
Φ with the Lagrange dual method [23] by fixing a.

3.2 Spatial Pooling

Spatial pooling is an operation that integrates the responses of nearby feature detectors into one. It
is often used in image recognition models to obtain a more compact representation that preserves
the important information in the input signal while discarding noises and irrelevant details.

In our model, we implement the max-pooling in the pooling layer. We use the max-pooling here
mainly because of its good performance for sparse codes and simplicity in implementation [24].

Given a disjoint local neighborhood W of size l × l in the sparse response maps, the max-pooling
responses z can be obtained by:

z = max
i∈W

(|ai|) (3)
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Here ai indicates the a local neighborhood of sparse responses in a.

After this operation, the sparse responses of the layer would shrink in a scale of l and become more
tolerant to minor translation and scaling.

3.3 Multi-layer Architecture

To model the hierarchical structure of the ventral stream, we stack three layers of sparse coding units
and pooling units together to construct a hierarchical sparse coding network. The input data of the
network is sampled from natural images. Before reaching the first layer, the raw data x is whitened
with local contrast normalization to have zero mean and unit variance.

x1 =
x− x

max(std(x), t)
(4)

where t is a small constant to avoid numerical errors. This operation approximates the visual pro-
cessing in retina and LGN and is important for unsupervised learning of the first layer feature.

In the training stage, the network is trained by greedy layer-wise training method. In each layer, a
large number of patches in the size of the features are extracted randomly from the input of the layer
and features are learned by alternatively updating Φ and a according to the rule derived from sparse
coding. The sparse codes of the current layer are pooled with max-pooling operation and then used
as the input to the next layer. In the inference stage, full images are used as the input of the network
and a hierarchy of sparse codes are obtained in a convolutional way by fixing the features learned in
the training stage.

4 Experiments

This section reports experimental results to validate our model. We first discuss the learned higher-
level features with visualization results, and then train a saliency model using the learned features
and compare it quantitatively with existing models.

4.1 Dataset

We evaluate our model on MIT [6] and FIFA [14] datasets which contain fixations on strong semantic
contents such as faces and texts. The MIT dataset [6] includes 1003 landscape and portrait images
mostly in 36◦×27◦ and the images in the dataset contain a variety of objects like cars, people, faces,
animals, etc. These images are randomly collected from Flickr creative commons and LabelMe
dataset and the fixation data were collected from 15 subjects with 3-sec-long “free-viewing”. The
FIFA dataset [14] contains 181 colored natural images (28◦ × 21◦) with fixation data. The fixation
data were collected from 8 subjects with 2 second long“free-viewing” and most of the images in
FIFA dataset contain faces in various with different postures.

4.2 Feature Learning

In order to learn mid- and high-level features from eye fixations, we collect salient regions from each
image according to the eye fixation data in the MIT and FIFA datasets. Particularly we convolve
a gaussian mask with accumulated fixation map from all the subjects and crop a square bounding
boxes of size 150 × 150 centered at positions of large local maxima. This way we collect 2178
salient regions from MIT dataset and 424 salient regions from FIFA dataset and use them to train
the three-layer sparse coding network with greedy layer-wise training. In each layer, each sparse
coding unit would be optimized to generate a sparse output code for its input and these codes would
be pooled by a max-pooling operation and then used as the input to the next layer. The parameters
of the network are listed in Table. 1 and Table. 2.

4.3 Visualization

We validate the features learned in deep layers by visualizing their most responsive stimuli in the
effective receptive field. The effective receptive field are computed by remapping one unit in the
deep layer to the input pixel space. To ensure that optimal stimuli in the input space were found, we
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Table 1: Parameters of the Network on MIT Dataset [6]
Layer 1 Layer 2 Layer 3

Feature Size 8× 8 4× 4× 16 8× 8× 200
Pooling Size 4× 4 4× 4 1× 1

Number of Features 16 200 200

Table 2: Parameters of the Network on FIFA Dataset [14]
Layer 1 Layer 2 Layer 3

Feature Size 6× 6× 3 6× 6× 25 6× 6× 100
Pooling Size 3× 3 3× 3 1× 1

Number of Features 25 100 225

traverse the whole response space of second layer and third layer for the all the full images in the
datasets.

Figure 1: Illustration of top 36 stimuli of four second-layer neurons in whitened image space of MIT
Dataset.

Figure 2: Illustration of the third-layer neurons that encode high-level concepts of faces by visualiz-
ing its receptive field and top 36 responsive stimuli (MIT Dataset).

Figure 3: Illustration of three third-layer neurons that encode high-level concepts of texts, round
objects, and windows (MIT Dataset).
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Figure 4: Average of top 36 stimuli for all the second-layer (left) and third-layer (right) neurons
trained on FIFA Dataset.

Through visualization, we found that, by training on salient regions, neurons in the second-layer
encode mid-level features like junctions, contours, textures, and parallelism (as shown in Figure. 1
and Figure. 4) and neurons in the third-layer are able to learn high-level concepts like faces, texts,
windows, and round objects (as illustrated in Figure. 2, Figure. 3 and Figure. 4). To further verify the
role of salient regions on the results of feature learning, we train the network by sampling random
patches and visualize the second-level and third-level features learned. We found that without salient
region sampling, the second-level neurons tend to learn features like long edges and the third-level
neurons fail to learn out meaningful features after optimization.

4.4 Saliency Prediction

We then integrate the features learned in previous section to predict visual saliency on the two
datasets. Here we take an approach similar to Judd et. al.[6], using a linear SVM to learn optimal
weights for feature integration. To train the linear SVM, we divide the two datasets into two halves.
Positive samples are collected from salient regions and negative ones are randomly sampled from
non-fixated are of the training set. The saliency map is then constructed by the output value of the
linear SVM on each local region:

s = g ◦max(wT x, 0) (5)

Here w denotes the weight of the linear SVM, x represents the vectorized feature responses for
the local region, and g is a gaussian mask with a standard deviation of 1 visual degree in the input
space. To compensate the boundary loss after stages of convolution, a zero-value boundary is added
according to the effective receptive size of the high-level neuron. Since there is a strong bias for
human fixations to be near the center of the image [6, 8], we also compare our model with a center
bias modeling (i.e., adding a Gaussian mask centered in the middle of the image on the final saliency
map) with that of Judd et. al.s model which also includes a distance to center channel to account
for center bias. All the saliency maps are resized to the original image size in the final evaluation.
It is worth emphasizing that our model does not include particular well-trained object detectors, but
learn all features in an unsupervised manner.

We evaluate our model using ROC curve. The ROC curve is obtained by varying the threshold
saliency map and calculating the true positive rate with respect to fixations across all subjects. The
first fixation for each image is eliminated as it is always the center of the image. The ROC curve
of human fixation data is also provided for comparison. This curve is computed by iterating all the
subjects and averaging the ROC Curve on whether the fixations of this subject can be predicted by
the saliency map generated by the other n− 1 subjects.

MIT Dataset For the MIT Dataset, we divide it into 501 training images and 502 testing images
and train a linear SVM based on the second layer responses. We then compare our algorithm with
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Figure 5: ROC curve of Different Saliency Models on the MIT Dataset [6].

classical saliency algorithms based on low level features [3, 4] and the benchmark algorithms on
MIT dataset [6] which combines classical low-level features, mid-level features (a horizon detector)
and high-level features (face and people detectors). From Figure. 5, we can see that, although we
just use one layer of feature, our model outperforms the models based on low-level features, and
work comparably well to the benchmark algorithm.

Figure 6: ROC curve of Different Saliency Models on the FIFA Dataset [14].

FIFA Dataset For the FIFA Dataset, we divide it into 90 training images and 91 testing images
and train a linear SVM based on the third layer responses. For comparison, we also compute the
saliency map using classical saliency algorithms based on low level features [3, 4] and the bench-
mark algorithms on FIFA dataset [8, 25] which combines low-level features with a face channels and
learns the weights from data1. The ROC Curve and Area Under Curve (AUC) for all the algorithms
are shown in Figure. 6. From Figure. 6, we can see that, our model outperforms all the previous
models and is close to the human fixation data.

1We use 0.027 for color, 0.024 for intensity, 0.222 for orientation and 0.727 for face channel according to
Table 1 in [25]
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5 Conclusion

This paper presents a novel algorithm to effectively learn base feature at various levels by training
the deep network on salient regions. A saliency model based on the deep learning framework is
further proposed and demonstrated to be competitive and promising in predicting where people look
at. As far as we know, this model is the first saliency model that attempts to utilize hierarchies
of features learned directly from natural images and naturally integrate these features to tackle the
problem of object/social saliency. Without pre-trained detectors designed for specific object detec-
tion, this model can still perform competitively on dataset with a lot of semantic content. Results
demonstrate that, through unsupervised learning, it is possible to learn semantic-related features
with a hierarchical architecture and link them with saliency by a simple linear classifier.
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